86 research outputs found

    Evaluación de técnicas de machine learning sobre diferentes bases de datos para detección de intrusos.

    Get PDF
    La ciberseguridad es uno de los grandes retos del mundo actual. El rápido desarrollo tecnológico ha permitido a la sociedad prosperar y mejorar la calidad de vida. Debido a esto, el mundo es más dependiente de las nuevas tecnologías, y gestionar los riesgos de seguridad de una forma rápida y eficaz, previniéndolos, identificándolos o mitigándolos supone un gran desafío. La aparición de nuevos ataques, y con mayor frecuencia, requiere una constante actualización en los métodos de detección de amenazas. Las técnicas tradicionales de almacenamiento de firmas son efectivas para ataques ya conocidos, pero ante un ataque nuevo no son capaces de detectarlo. Por ello, los sistemas de detección de intrusos que aplican técnicas de Machine Learning son una alternativa que está cobrando importancia en la actualidad. En este trabajo se ha pretendido analizar distintas técnicas de machine learning y determinar mediante cuáles se obtienen los mejores resultados de clasificación del tráfico en función de las medidas de rendimiento y el tiempo necesario para llevar a cabo el cálculo. Este último parámetro es determinante si en un futuro se plantea una solución en tiempo real. Para abordar el problema, previamente se han estudiado diferentes datasets de tráfico de comunicaciones disponibles en la actualidad que contienen una amplia variedad de intrusiones, y se seleccionó el conjunto de datos CICIDS2017 como el más apropiado. Este dataset contiene flujos de tráfico bidireccionales, correspondientes a capturas de tráfico que incluyen tráfico benigno y diferentes tipos de ataque. Cada flujo de tráfico está caracterizado por un conjunto de atributos relativos a la conexión que se utilizan para entrenar los métodos de clasificación. Se han evaluado diversas técnicas de clasificación utilizando el software Weka con el objetivo de modelar las conexiones y distinguir entre las que corresponden a ataques y a conexiones normales: Naive Bayes, Logistic, Mulltilayer Perceptron, Sequential Minimal Optimization, k-nearest neighbors, Adaptive Boosting, OneR, J48, PART, y Random Forest. En general, los métodos basados en árboles de decisión han resultado ser los más eficientes (PART, J48 y Random Forest), con valores de F1 superiores a 0,999 (valores promedio obtenidos sobre todo el conjunto de datos). Se ha analizado cómo influye en los resultados el hecho de considerar clasificación multiclase (distinguiendo entre distintos tipos de ataque) frente a clasificación binaria (distinguiendo entre tráfico normal y ataque), así como el efecto de reducir el número de atributos utilizado mediante la selección previa de los más relevantes. Reduciendo la complejidad en la clasificación binaria y mediante la selección de atributos se pueden obtener mejores resultados y en un tiempo menor, respectivamente. Finalmente, se ha utilizado la herramienta Zeek, especializada en obtener logs con información detallada sobre las conexiones, para obtener un nuevo conjunto de atributos a partir de los flujos de tráfico detectados y etiquetados. Los resultados de clasificación obtenidos utilizando árboles de decisión también resultaron muy buenos (con F1 por encima de 0,98, salvo para algún tipo específico de ataque) y con tiempos de cálculo muy reducidos. En este trabajo se han obtenido resultados de clasificación de tráfico sobre el dataset CICIDS2017 muy buenos, lo que permite afirmar que las técnicas de aprendizaje automático utilizadas pueden resultar adecuadas en la detección de intrusiones y se podrían plantear futuras implementaciones de las mismas en tiempo real.<br /

    Authorizing Third-Party Applications Served through Messaging Platforms

    Get PDF
    The widespread adoption of smartphones and the new-generation wireless networks have changed the way that people interact among themselves and with their environment. The use of messaging platforms, such as WhatsApp, has become deeply ingrained in peoples’ lives, and many digital services have started to be delivered using these communication channels. In this work, we propose a new OAuth grant type to be used when the interaction between the resource owner and the client takes place through a messaging platform. This new grant type firstly allows the authorization server to be sure that no Man-in-the-Middle risk exists between the resource owner and the client before issuing an access token. Secondly, it allows the authorization server to interact with the resource owner through the same user-agent already being used to interact with the client, i.e., the messaging platform, which is expected to improve the overall user experience of the authorization process. To verify this assumption, we conducted a usability study in which subjects were required to perform the full authorization process using both the standard authorization code grant type (through a web-browser) and the new grant type defined in this work. They have also been required to fill in a small questionnaire including some demographic information and their impressions about both authorization flows. The results suggest that the proposed grant type eases the authorization process in most cases

    An ontology-driven architecture for data integration and management in home-based telemonitoring scenarios

    Get PDF
    The shift from traditional medical care to the use of new technology and engineering innovations is nowadays an interesting and growing research area mainly motivated by a growing population with chronic conditions and disabilities. By means of information and communications technologies (ICTs), telemedicine systems offer a good solution for providing medical care at a distance to any person in any place at any time. Although significant contributions have been made in this field in recent decades, telemedicine and in e-health scenarios in general still pose numerous challenges that need to be addressed by researchers in order to take maximum advantage of the benefits that these systems provide and to support their long-term implementation. The goal of this research thesis is to make contributions in the field of home-based telemonitoring scenarios. By periodically collecting patients' clinical data and transferring them to physicians located in remote sites, patient health status supervision and feedback provision is possible. This type of telemedicine system guarantees patient supervision while reducing costs (enabling more autonomous patient care and avoiding hospital over flows). Furthermore, patients' quality of life and empowerment are improved. Specifically, this research investigates how a new architecture based on ontologies can be successfully used to address the main challenges presented in home-based telemonitoring scenarios. The challenges include data integration, personalized care, multi-chronic conditions, clinical and technical management. These are the principal issues presented and discussed in this thesis. The proposed new ontology-based architecture takes into account both practical and conceptual integration issues and the transference of data between the end points of the telemonitoring scenario (i.e, communication and message exchange). The architecture includes two layers: 1) a conceptual layer and 2) a data and communication layer. On the one hand, the conceptual layer based on ontologies is proposed to unify the management procedure and integrate incoming data from all the sources involved in the telemonitoring process. On the other hand, the data and communication layer based on web service technologies is proposed to provide practical back-up to the use of the ontology, to provide a real implementation of the tasks it describes and thus to provide a means of exchanging data. This architecture takes advantage of the combination of ontologies, rules, web services and the autonomic computing paradigm. All are well-known technologies and popular solutions applied in the semantic web domain and network management field. A review of these technologies and related works that have made use of them is presented in this thesis in order to understand how they can be combined successfully to provide a solution for telemonitoring scenarios. The design and development of the ontology used in the conceptual layer led to the study of the autonomic computing paradigm and its combination with ontologies. In addition, the OWL (Ontology Web Language) language was studied and selected to express the required knowledge in the ontology while the SPARQL language was examined for its effective use in defining rules. As an outcome of these research tasks, the HOTMES (Home Ontology for Integrated Management in Telemonitoring Scenarios) ontology, presented in this thesis, was developed. The combination of the HOTMES ontology with SPARQL rules to provide a flexible solution for personalising management tasks and adapting the methodology for different management purposes is also discussed. The use of Web Services (WSs) was investigated to support the exchange of information defined in the conceptual layer of the architecture. A generic ontology based solution was designed to integrate data and management procedures in the data and communication layer of the architecture. This is an innovative REST-inspired architecture that allows information contained in an ontology to be exchanged in a generic manner. This layer structure and its communication method provide the approach with scalability and re-usability features. The application of the HOTMES-based architecture has been studied for clinical purposes following three simple methodological stages described in this thesis. Data and management integration for context-aware and personalized monitoring services for patients with chronic conditions in the telemonitoring scenario are thus addressed. In particular, the extension of the HOTMES ontology defines a patient profile. These profiles in combination with individual rules provide clinical guidelines aiming to monitor and evaluate the evolution of the patient's health status evolution. This research implied a multi-disciplinary collaboration where clinicians had an essential role both in the ontology definition and in the validation of the proposed approach. Patient profiles were defined for 16 types of different diseases. Finally, two solutions were explored and compared in this thesis to address the remote technical management of all devices that comprise the telemonitoring scenario. The first solution was based on the HOTMES ontology-based architecture. The second solution was based on the most popular TCP/IP management architecture, SNMP (Simple Network Management Protocol). As a general conclusion, it has been demonstrated that the combination of ontologies, rules, WSs and the autonomic computing paradigm takes advantage of the main benefits that these technologies can offer in terms of knowledge representation, work flow organization, data transference, personalization of services and self-management capabilities. It has been proven that ontologies can be successfully used to provide clear descriptions of managed data (both clinical and technical) and ways of managing such information. This represents a further step towards the possibility of establishing more effective home-based telemonitoring systems and thus improving the remote care of patients with chronic diseases

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Design and evaluation of echocardiograms codification and transmission for Teleradiology systems

    Get PDF
    Las enfermedades cardiovasculares son la mayor causa de muerte en el mundo. Aunque la mayoría de muertes por cardiopatías se puede evitar, si las medidas preventivas no son las adecuadas el paciente puede fallecer. Es por esto, que el seguimiento y diagnóstico de pacientes con cardiopatías es muy importante. Numerosos son las pruebas médicas para el diagnostico y seguimiento de enfermedades cardiovasculares, siendo los ecocardiogramas una de las técnicas más ampliamente utilizada. Un ecocardiograma consiste en la adquisición de imágenes del corazón mediante ultrasonidos. Presenta varias ventajas con respecto otras pruebas de imagen: no es invasiva, no produce radiación ionizante y es barata. Por otra parte, los sistemas de telemedicina han crecido rápidamente ya que ofrecen beneficios de acceso a los servicios médicos, una reducción del coste y una mejora de la calidad de los servicios. La telemedicina proporciona servicios médicos a distancia. Estos servicios son de especial ayuda en casos de emergencia médica y para áreas aisladas donde los hospitales y centros de salud están alejados. Los sistemas de tele-cardiología pueden ser clasificados de acuerdo al tipo de pruebas. En esta Tesis nos hemos centrado en los sistemas de tele-ecocardiografia, ya que los ecocardiogramas son ampliamente usados y presentan el mayor reto al ser la prueba médica con mayor flujo de datos. Los mayores retos en los sistemas de tele-ecocardiografia son la compresión y la transmisión garantizando que el mismo diagnóstico es posible tanto en el ecocardiograma original como en el reproducido tras la compresión y transmisión. Los ecocardiogramas deben ser comprimidos tanto para su almacenamiento como para su transmisión ya que estos presentan un enorme flujo de datos que desbordaría el espacio de almacenamiento y no se podría transmitir eficientemente por las redes actuales. Sin embargo, la compresión produce pérdidas que pueden llevar a un diagnostico erróneo de los ecocardiogramas comprimidos. En el caso de que las pruebas ecocardiograficas quieran ser guardadas, una compresión clínica puede ser aplicada previa al almacenamiento. Esta compresión clínica consiste en guardar las partes del ecocardiograma que son importantes para el diagnóstico, es decir, ciertas imágenes y pequeños vídeos del corazón en movimiento que contienen de 1 a 3 ciclos cardiacos. Esta compresión clínica no puede ser aplicada en el caso de transmisión en tiempo real, ya que es el cardiólogo especialista quien debe realizar la compresión clínica y éste se encuentra en recepción, visualizando el echocardiograma transmitido. En cuanto a la transmisión, las redes sin cables presentan un mayor reto que las redes cableadas. Las redes sin cables tienen un ancho de banda limitado, son propensas a errores y son variantes en tiempo lo que puede resultar problemático cuando el ecocardiograma quiere ser transmitido en tiempo real. Además, las redes sin cables han experimentado un gran desarrollo gracias a que permiten un mejor acceso y movilidad, por lo que pueden ofrecer un mayor servicio que las redes cableadas. Dos tipos de sistemas se pueden distinguir acorde a los retos que presenta cada uno de ellos: los sistemas de almacenamiento y reenvió y los sistemas de tiempo real. Los sistemas de almacenamiento y reenvió consisten en la adquisición, almacenamiento y el posterior envió del ecocardiograma sin requerimientos temporales. Una compresión clínica puede ser llevada a cabo previa al almacenamiento. Además de la compresión clínica, una compresión con pérdidas es recomendada para reducir el espacio de almacenamiento y el tiempo de envío, pero sin perder l ainformación diagnóstica de la prueba. En cuanto a la transmisión, al no haber requerimientos temporales, la transmisión no presenta ninguna dificultad. Cualquier protocolo de transmisión fiable puede ser usado para no perder calidad en la imagen debido a la transmisión. Por lo tanto, para estos sistemas sólo nos hemos centrado en la codificación de los ecocardiogramas. Los sistemas de tiempo real consisten en la transmisión del ecocardiograma al mismo tiempo que éste es adquirido. Dado que el envío de video clínico es una de las aplicaciones con mayor demanda de ancho de banda, la compresión para la transmisión es requerida, pero manteniendo la calidad diagnóstica de la imagen. La transmisión en canales sin cables puede ser afectada por errores que distorsionan la calidad del ecocardiograma reconstruido en recepción. Por lo tanto, métodos de control de errores son requeridos para minimizar los errores de transmisión y el retardo introducido. Sin embargo, aunque el ecocardiograma sea visualizado con errores debido a la transmisión, esto no implica que el diagnóstico no sea posible. Dados los retos previamente descritos, las siguientes soluciones para la evaluación clínica, compresión y transmisión han sido propuestas: - Para garantizar que el ecocardiograma es visualizado sin perder información diagnóstica 2 tests han sido diseñados. El primer test define recomendaciones para la compresión de los ecocardiogramas. Consiste en dos fases para un ahorro en el tiempo de realización, pero sin perder por ello exactitud en el proceso de evaluación. Gracias a este test el ecocardiograma puede ser comprimido al máximo sin perder calidad diagnóstica y utilizando así más eficientemente los recursos. El segundo test define recomendaciones para la visualización del ecocardiograma. Este test define rangos de tiempo en los que el ecocardiograma puede ser visualizado con inferior calidad a la establecida en el primer test. Gracias a este test se puede saber si el ecocardiograma es visualizado sin pérdida de calidad diagnóstica cuando se introducen errores en la visualización, sin la necesidad de realizar una evaluación para cada video transmitido o diferentes condiciones de canal. Además, esta metodología puede ser aplicada para la evaluación de otras técnicas de diagnóstico por imagen. - Para la compresión de ecocardiogramas dos métodos de compresión han sido diseñados, uno para el almacenamiento y otro para la transmisión. Diferentes propuestas son diseñadas, ya que los ecocardiogramas para los dos propósitos tienen características diferentes. Para ambos propósitos un método de compresión en la que las facilidades que incorporan los dispositivos de segmentar la imagen y en la que las características de visualización de los ecocardiogramas han sido tenidas en cuenta ha sido diseñado. Para la compresión del ecocardiograma con el propósito de almacenarlo un formato de almacenamiento fácilmente integrable con DICOM basado en regiones y en el que el tipo de datos y la importancia clínica de cada región es tenido en cuenta ha sido diseñado. DICOM es el formato para el almacenamiento y transmisión de imágenes más ampliamente utilizado actualmente. El formato de compresión propuesto supone un ahorra de hasta el 75 % del espacio de almacenamiento con respecto a la compresión con JPEG 2000, actualmente soportado por DICOM, sin perder calidad diagnostica de la imagen. Los ratios de compresión para el formato propuesto dependen de la distribución de la imagen, pero para una base de datos de 105 ecocardiogramas correspondientes a 4 ecógrafos los ratios obtenidos están comprendidos entre 19 y 41. Para la compresión del ecocardiograma con el propósito de la transmisión en tiempo real un método de compresión basado en regiones en el que el tipo de dato y el modo de visualización han sido tenidos en cuenta se ha diseñado. Dos modos de visualización son distinguidos para la compresión de la región con mayor importancia clínica (ultrasonido), los modos de barrido y los modos 2-D. La evaluación clínica diseñada para las recomendaciones de compresión fue llevada a cabo por 3 cardiologos, 9 ecocardiogramas correspondientes a diferentes pacientes y 3 diferentes ecógrafos. Los ratios de transmisión recomendados fueron de 200 kbps para los modos 2-D y de 40 kbps para los modos de barrido. Si se comparan estos resultados con previas soluciones en la literatura un ahorro mínimo de entre 5 % y el 78 % es obtenido dependiendo del modo. - Para la transmisión en tiempo real de ecocardiogramas un protocolo extremo a extremo basada en el método de compresión por regiones ha sido diseñado. Este protocolo llamado ETP de las siglas en inglés Echocardiogram Transmssion Protocol está diseñado para la compresión y transmisión de las regiones por separado, pudiendo así ofrecer diferentes ratios de compresión y protección de errores para las diferentes regiones de acuerdo a su importancia diagnostica. Por lo tanto, con ETP el ratio de transmisión mínimo recomendado para el método de compresión propuesto puede ser utilizado, usando así eficientemente el ancho de banda y siendo menos sensible a los errores introducidos por la red. ETP puede ser usado en cualquier red, sin embargo, en el caso de que la red introduzca errores se ha diseñado un método de corrección de errores llamado SECM, de las siglas en inglés State Error Control Method. SECM se adapta a las condiciones de canal usando más protección cuando las condiciones empeoran y usando así el ancho de banda eficientemente. Además, la evaluación clínica diseñada para las recomendaciones de visualización ha sido llevada a cabo con la base de datos de la evaluación previa. De esta forma se puede saber si el ecocardiograma es visualizado sin pérdida diagnostica aunque se produzcan errores de transmisión. En esta tesis, por lo tanto, se ha ofrecido una solución para la transmisión en tiempo real y el almacenamiento de ecocardiogramas preservando la información diagnóstica y usando eficientemente los recursos (disco de almacenamiento y ratio de transmisión). Especial soporte se da para la transmisión en redes sin cables, dando soluciones a las limitaciones que estas introducen. Además, las soluciones propuestas han sido probadas y comparadas con otras técnicas con una red de acceso móvil WiMAX, demostrando que el ancho de banda es eficientemente utilizado y que el ecocardiograma es correctamente visualizado de acuerdo con las recomendaciones de visualización dadas por la evaluación clínica

    Aplicación para la generación de recorridos de orientación en parques en el ámbito educativo

    Get PDF
    Este Trabajo Fin de Grado tiene como finalidad el desarrollo y programación de una aplicación que será ejecutada sobre dispositivos tipo tablet bajo la plataforma Phonegap y será utilizada por profesores de Educación Física en actividades educativas relacionadas con la orientación. Gracias a la utilización de Phonegap se permite adaptar el código de la aplicación a distintos sistemas operativos existentes en el mercado (iOS, Android, Windows Phone...). Por tanto, esta aplicación propone una solución para el personal docente de Educación Física brindando la posibilidad de generar de manera dinámica e informatizada los distintos recorridos empleados en las actividades de orientación desarrolladas con sus alumnos. Proporciona la posibilidad de posicionar distintas balizas sobre mapas y así mismo generar diferentes recorridos a partir de ellas. La aplicación también permite asignar una pequeña descripción y/o fotografía(s) a cada baliza. Además incluye la opción de generar un documento con la información del recorrido y de todas las balizas que lo componen. Para ello se ha utilizado la API de Google Maps en todo momento, tanto para la visualización del mapa como para el posicionamiento de balizas. Además, toda la información generada se almacena de forma dinámica en una base de datos, alojada en un servidor externo, utilizando MySQL, para acceder a ella de forma rápida y sencilla

    Experimental simulation of continuous nanofiltration processes by means of a single module in batch mode

    Full text link
    [EN] This work proposes a method of simulating the performance of continuous nanofiltration processes by means of experimental runs performed on a laboratory set-up equipped with a spiral-wound module working in batch recirculation mode. It describes how to implement the proper changes in feed concentration and operating conditions in a batch recirculated system in order to obtain similar conditions to those of a continuous one. The analogy between the concentration process in the continuous and in the batch recirculation system is discussed and the difference in ion concentration of the cumulative permeate between the two systems is estimated numerically. The procedure was applied in a case study to estimate the performance of a continuous process intended to remove nitrate from brackish water using a high rejection nanofiltration membrane (DowFilmtec NF90). The sequence of concentration steps performed in the batch-recirculated set-up yielded an estimation of the ion concentration profiles throughout the continuous system. A mathematical analysis of the results showed that the nitrate concentration in the permeate experimentally obtained in the batch system is 4.5% higher than that expected in the continuous system. The experimental method described here can be used to design membrane system applications for which the target ions are not accurately predicted by models or are not included in commercial software. (C) 2017 Published by Elsevier B.V.This work was supported by the Spanish Ministry for Economy and Competitiveness [Project OPTIMEM CTM2010-20248].Santafé Moros, MA.; Gozálvez-Zafrilla, JM.; Lora-García, J. (2017). Experimental simulation of continuous nanofiltration processes by means of a single module in batch mode. Separation and Purification Technology. 187:233-243. https://doi.org/10.1016/j.seppur.2017.06.05923324318

    Aplicación Android basada en Firebase para la gestión y evaluación de comportamientos antideportivos en competiciones de tenis

    Get PDF
    Este Trabajo Fin de Grado consiste en el desarrollo de una aplicación Android, basada en la plataforma de Google para desarrollo de aplicaciones móviles Firebase, que, fundamentalmente, facilite la gestión y evaluación de los comportamientos deportivos y antideportivos en las competiciones de tenis de base. La aplicación permite a los organizadores de torneos de tenis crear formularios para evaluar distintos aspectos de la competición y a los jugadores de estos torneos contestar las preguntas propuestas en sus dispositivos móviles al finalizar los partidos.El sistema desarrollado se basa en una arquitectura cliente-servidor donde la plataforma Firebase actúa como servidor del sistema y la aplicación es el cliente que, haciendo uso de las diferentes APIs de la plataforma, se comunica con ella.La aplicación implementada en este proyecto permite el registro, inicio y cierre de sesión de usuarios mediante el uso de la API Firebase Authentication.Los administradores de la aplicación pueden crear torneos asignando a los jugadores, así como los formularios que contestarán al finalizar sus partidos. Para agilizar la generación de formularios, estos se pueden crear desde fuera de la aplicación importando un archivo Excel en el almacenamiento en la nube Cloud Storage.La plataforma envía notificaciones a los jugadores de los torneos haciendo uso de la API de Cloud Messaging desde otra función en Cloud Functions que se activa al producirse ciertos eventos en Cloud Firestore.Los jugadores contestan los formularios, las respuestas se envían y se guardan en Cloud Firestore activando una función en Cloud Functions que crea un archivo Excel con las respuestas de los jugadores y lo sube a Cloud Storage, en una carpeta con el nombre del torneo, separando, de esta manera, las respuestas de cada uno de los torneos. Con la aplicación se facilita la recogida de las respuestas de los competidores y con las respuestas almacenadas en archivos Excel se facilita el tratamiento y evaluación de los datos.<br /

    Desarrollo de un microservicio para la caracterización de lesiones de psoriasis y su integración sobre la red social privada SIGNAL

    Get PDF
    Este Trabajo de Fin de Máster continúa los recientes trabajos que emplean el uso de plataformas de mensajería, en este caso la plataforma Signal, como medio para la monitorización de pacientes en el ámbito médico. Se plantea el uso de bots (programas informáticos que ejecutan tareas automatizadas mediante la interacción con el usuario) que ofrecen al usuario servicios y funcionalidades para su propia autogestión en el seguimiento de la enfermedad. En concreto, este trabajo se centra en el desarrollo de una funcionalidad que ofrecerá al usuario la opción de realizar un seguimiento de las lesiones de psoriasis. Esto se consigue gracias al desarrollo de la plataforma global en una arquitectura software de microservicios con una comunicación mediante el protocolo HTTP, que permite integrar servicios como el aquí desarrollado para añadir la funcionalidad deseada. Mediante la interacción con el bot, el usuario seleccionará la funcionalidad y enviará una imagen para su análisis. La imagen será tratada mediante procesos de segmentación y binarizado, que analizaran las características de la psoriasis, permitiendo extraer una máscara para la detección de las lesiones y extrayendo la información relativa a la evolución de la extensión de la lesión en la superficie de la piel. Este análisis vendrá determinado por la información facilitada por el usuario en referencia al tipo de psoriasis que padece. Se ha planteado que el análisis realizado en el trabajo se centre en las formas más comunes de psoriasis. Esto establece dos análisis según la tipología de lesión: análisis tipo gota, que se centra más en las regiones enrojecidas de la piel y análisis tipo placa, que se centra en detectar las zonas blancas formadas por la placa además de las zonas de piel enrojecida
    corecore